

Future Transport Systems – opportunities and challenges for innovations

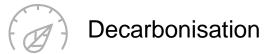
Anu Tuominen VTT Technical Research Centre of Finland Ltd

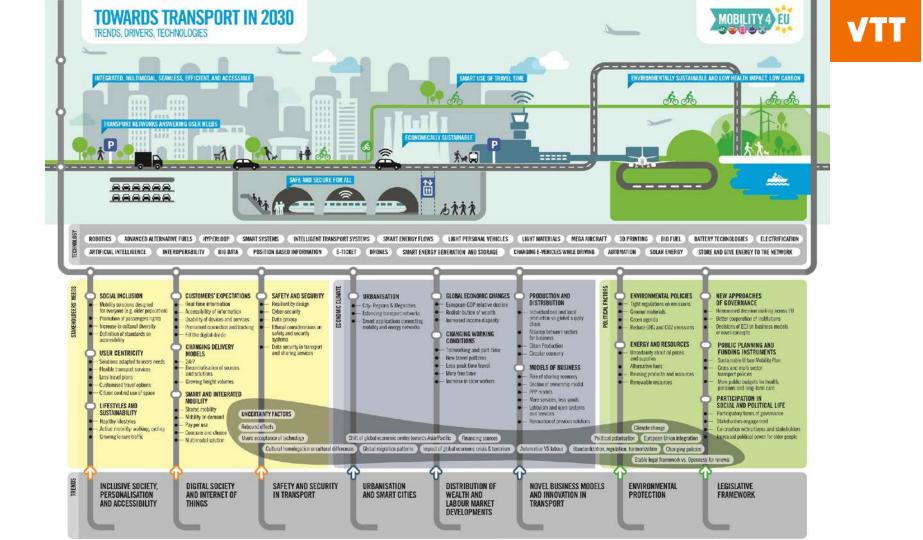
20/01/2021 VTT – beyond the obvious

Presentation outline

Global (mega)trends affecting the future of transport

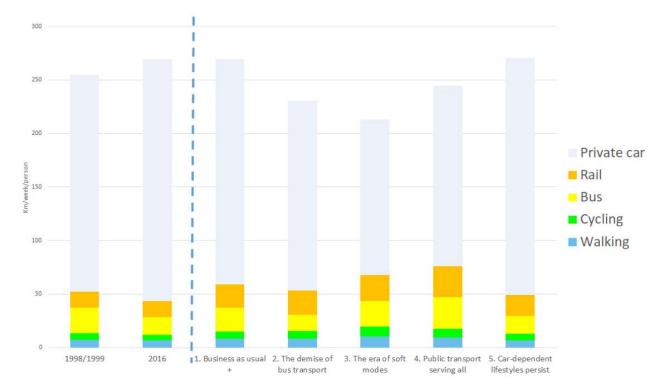
- Transport visions, scenarios and strategic choices
 - Low-carbon
 - Connected-Automated
 - Smart & sustainable
- Opportunities and challenges for transport innovations within systemic transitions
 - Multi-actor environment
 - New technolgies and services vs. sustainability




Today's Five Major Themes in Transport*

Societal trends that will change how we travel...

- Demographics: ageing population, emigration, urbanization vs. urban sprawl
- Speeding up of life...but what about the COVID19 implications?
- Personalization and individualization
- Health, Wellness and Well-being
- Collaborative Consumption; Sharing economy
- Peak car, Mobility preferences of Millennials
- Digital communities, Geo-Socialization through social media
- E-commerce, last mile problem
- Increasing safety & security concerns
- Connectivity, convergence, Internet of Everything (IoE), big Data


How will we be moving in our cities in the future (2050)?*

- 1. Innovative and more efficient vehicle types will be promoted
- 2. Traffic will be more self-organized and self-organizing
- 3. Inner cites will be almost free of big motor vehicles
- 4. Inner-city streets will become livable spaces
- 5. Bicycles will become the main mode of transport
- 6. Sharing will be the new owning
- 7. Everybody will be a mobility provider
- 8. Transport of goods will be mostly local
- 9. Freights and passengers will go together
- 10. The end commuting: suburbia will become proper urban centers
- 11. Our cities will offer mobility experimental zones

Vincent Callebaut's 2050 Vision of Paris as a "Smart City"

Walking and cycling in 2034: Five scenarios*

*Liikunnallinen elämäntapa kestävän kasvun aikaansaajana (STYLE) https://www.styletutkimus.fi/

Transport and Health

- We are living longer, but are we also living longer in good physical condition? – Not if the current trends (even pre-covid) continue!
 - The share of walking and cycling on daily trips has decreased from 34% to 30% in the past twenty years
 - Less than half of FI adults are physically active enough to stay healthy, 25% are basically not physically active at all!
 - 10-20% of school children are physically active in a way that is required for normal physical development
- How can holistic transport planning support a healthy lifestyle?
 - "Build them a cycle lane and they will come..."
 - Walking and cycling to work and with children experiments and best practices
 - Increase in walking and cycling by 20% would generate health benefits worth around 500 M€/year*

Low Carbon Mobility

- Clean
- Multimodal
- Intermodal
- Healthy
- Safe
- Shared...

Photo: STT

EU-level strategic choices in mobility: Green, Efficient, <u>Low-Carbon</u>, Digital

- The European Commission's "Green Deal" (2020) Targets to reduce transport-related greenhouse gas emissions by 90% by 2050 with a help of a Strategy for a Sustainable and Smart Mobility (EC 2020)
- New ambitious target (2020) of the European Union is to reduce greenhouse gas emissions at least 55% below 1990 levels by 2030
- Finnish National target: to halve GHG emissions from transport by 2030 (compared to 2005) → 13% (1,65Mt CO₂) additional reduction compared to the baseline scenario; Carbon free transport by 2045.

EC Smart and Sustainable Mobility Strategy (2020)

- Greening mobility must be the new licence for the transport sector to grow
- Mobility in Europe should be based on an efficient and interconnected multimodal transport system
- The three pillars of our future actions to achieve this systemic change:
 - 1. make all transport modes more sustainable
 - 2. make sustainable alternatives widely available in a multimodal transport system
 - 3. put in place the right incentives to drive the transition.

EC Smart and Sustainable Mobility Strategy key milestones

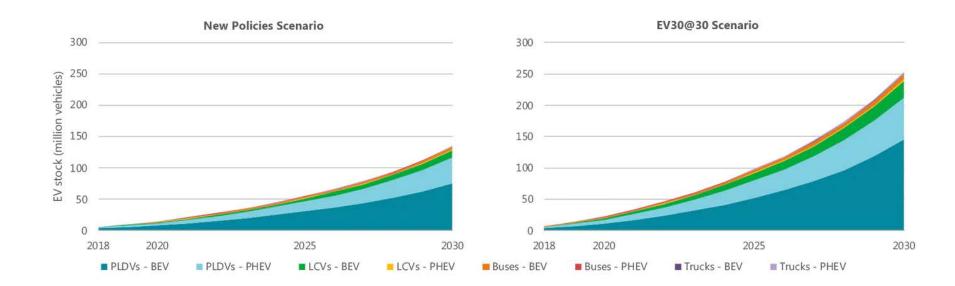
By 2030:

- At least 30 million zero-emission cars will be in operation on European roads
- 100 European cities will be climate neutral
- High-speed rail traffic will double across Europe
- Scheduled collective travel for journeys under 500 km should be carbon neutral
- Automated mobility will be deployed at large scale
- Zero-emission marine vessels will be market-ready

By 2035:

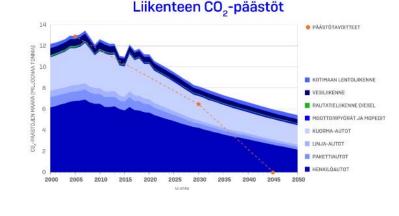
Zero-emission large aircraft will be market-ready

By 2050:


- Nearly all cars, vans, buses as well as new heavy-duty vehicles will be zero-emission
- Rail freight traffic will double
- A fully operational, multimodal Trans-European Transport Network (TEN-T) for sustainable and smart transport with high speed connectivity

Vincent Callebaut: Paris 2050 The smog eating city of the future.

EV stock scenarios by IEA*


20/01/2021 VTT - beyond the obvious *International Energy Agency https://www.iea.org/

Measures to reach the transport CO2 target in Finland

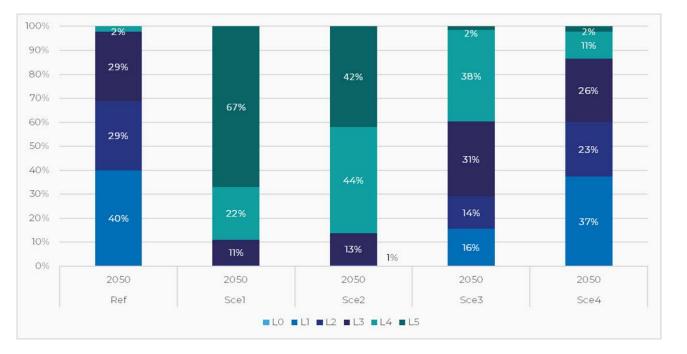
- Replacement of fossil fuels
- Renewal of the vehicle fleet
- Improvement of the energy efficiency of the transport system
- (Transport pricing measures)

Liikenne- ja viestintäministeriö 2021. Fossiilittoman liikenteen tiekartta – Luonnos valtioneuvoston periaatepäätökseksi kotimaan liikenteen kasvihuonekaasujen vähentämisestä. https://valtioneuvosto.fi/hanke?tunnus=LVM050:00/2019



Connected, Automated Mobility

- Safe
- Flexible
- Affordable
- Connected
- User-centric
- Inclusive
- Seamless...


The Automated Driving development path for passenger and freight vehicles

Automation Level	Established 2018 2020 2022 2024 2026 2028 2030	Automation Level Established 2018 2020 jgu 2022 2024 2026 2028 2030
Level 5: Full Automation	Fully Automated Passenger Cars	Level 5: Fully Automated Full Automation Freight Vehicles
Level 4: High Automation	Urban and Sub-Urban Pilot Highway Autopilot including Highway Convoy	Level 4: Highly Automated Vehicles High Automation High Automation Highway Pilot Platooning
Level 3: Conditional Automation	Highway Chauffeur Traffic Jam Chauffeur	Level 3: Highway Chauffeur Conditional Automation Traffic Jam Chauffeur
Level 2: Partial Automation	Traffic Jam Assist Parking Assist	Level 2: Automated Truck Platooning
Level 1: Driver Assistance	Adaptive Cruise Control Stop &Go Lane Keeping Assist Lane Change Assist Parking assist	Level 1: Stop &Go Driver Assistance Lane Keeping Assist Lane Change Assist
Level 0: No Driving Automation, support beyond human capability to act	Lane Departure Warning Blind-spot Warning Forward Collission Warning ABS, ESC Emergency Brake	Level 0: Lane Departure Warning Blind-spot Warning Automation, support Forward Collission Warning Devyond human ABS, ESC capability to act Emergency Brake

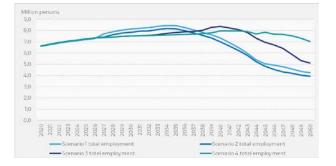
ERTRAC Connected Automated Driving Roadmap

https://www.ertrac.org/uploads/documentsearch/id57/ERTRAC-CAD-Roadmap-2019.pdf

Estimated composition of car fleet by automation level in 2050 – EU 27*

Scenario 1: Fast, private, unrestricted and partially distributed (Maximum uptake)

Scenario 2: Fast, private, restricted and partially distributed (Intermediate uptake)


Scenario 3: Moderate, shared, restricted and limited distribution (Moderate uptake)

Scenario 4: Slow, shared, restricted and limited distribution (Low uptake)

Socio-economic implications of CAD

- Significant employment declines in transport services driver employment; other jobs in transport services are not as directly impacted
 - For freight transport: mobility operators will be needed (until SAE-level 4)
- Job growth in manufacturing, construction and other services due to the demand for new, more valuable vehicles, components, and infrastructure

Smart, Shared, Sustainable Mobility

- Multimodal
- Intermodal
- Clean
- Safe
- Flexible
- Affordable

- User-centric
- Connected
- Inclusive
- Shared
- Healthy
- Seamless...

Green transportation pyramid

What is smart, shared Mobility?

Core elements of smart mobility (Docherty et al. 2018):

- 1. A transition from ownership to usership
- 2. A renewed mobility marketplace as the traditional business model for public-private allocation of tasks across the mobility system evolves
- 3. A transition from a modal-centric to a user-centric system, where the users' needs will get the main focus in future developments instead of the various modes of transport
- 4. A new role of the citizen in the transport system both as a source and recipient of information and services.

Docherty, I., Marsden, G. & Anable, J., 2018. The governance of smart mobility. Transportation Research Part A: Policy and Practice, 115, 114-125. <u>https://doi.org/10.1016/j.tra.2017.09.012</u>

Challenges of smart Mobility

- The tension between supporting the uptake of innovations, which offer benefits in the short-run, but which may create bigger governance challenges as they scale
- Management of the taxation of the transport system to reduce e.g. negative externalities like congestion and local pollution as the actors' roles change
- Data as a critical asset to control and have power over the mobility marketplace - open data offers many opportunities to different actors, but shifts in the control of data will make governing mobility difficult.
- Equity and inclusion and the fact that a smart mobility transition will not occur at the same pace or degree across different areas.

E-scooters marketed as a sustainable and joyful means of transport for active citizens, but there are trade-offs ...

- Service providers generating as much transport as possible to maximise returns on their investment and wide market entry vs. long term sustainable urban mobility targets of the municipalities
- More scoots, more use and profit, better user satisfactions, but crowding very central areas vs. convenient last mile mode to support public transport if located properly; may even reduce vehicle congestion
- No regulation on market access, fees, speed, safety like other modes
- Safety, conflicts with other modes, security
- Sustainability of the business model (value proposition, creation, delivery capture and value transfer)
- eScoot data collection/sharing for the benefit of the whole system opportunities vs. challenges in the data control
- Services first emerging in central high density areas vs. social equity

Opportunities and challenges for transport innovations within systemic transitions

Multiple actors and interests in socio-technical transitions

- The smart sustainability transition in urban transport is a joint effort of multiple actors, but the roles are not always clear
- The smart sustainability transition requires
 - planning vision with clear targets
 - packages of measures with multiple benefits
 - cross-sectoral approaches
 - renewal of regulatory frameworks
 - balance between pricing and social inclusion

Technological Innovation System (TIS)

- An approach for analysing the uptake and conditions of new technologies and solutions (Hekkert et al., 2007).
- Technological Innovation System (TIS)
 - "a network of agents interacting in the economic/industrial area under a particular institutional infrastructure"
- Seven functions of TIS affect the performance of the system (Bergek et al., 2008) and are *highly important for well performing innovation systems*

Hekkert, M. P., Suurs, R. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological forecasting and social change, 74(4), 413-432. Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analyzing the functional dynamics of **technological innovation systems** Ascheme of analysis. Research policy, 37(3), 407-429.

Seven functions of Technological Innovation System (TIS)

- 1. Knowledge development and diffusion
- 2. Influence on the direction of search: e.g. guidance of resources and incentives towards adopting certain technologies
- 3. Entrepreneurial experimentation: testing of new solutions or markets
- 4. Market formation: creating markets and aim to create demand for the new solutions
- 5. Resource mobilization: practical allocation of financial or human resources
- 6. Legitimation: efforts to overcome resistance and established practices and develop acceptance
- 7. Development of positive externalities: spillovers that can benefit e.g. new actors and benefit the renewal and development of the system

Mobility-as-a-Service (MaaS) – Experiences*

- Early engagement with technology
 - basis for the rest of the solution
 - users have difficulties to understand the benefits the first use case!
- Interoperability
 - flexibility with regards to implementation of different operators' services
- Clear regulation over new modes
- Public authorities as bodies overseeing transition
- Organisations to work together to deliver new services, open engagement
- Challenges
 - lacking standards and interoperability (data, interfaces, systems)
 - communication and supervision of the requirements and market situations
 - terms of ticket sales
 - potential generation of additional travel and externalities

© POLIS network

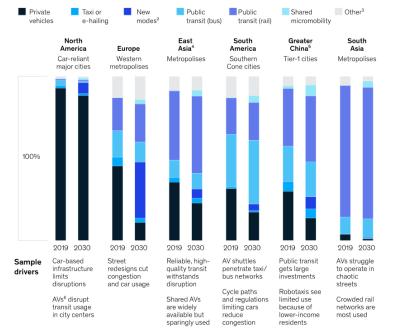
http://www.maas4eu.eu/ *Regsmart project of the Norwegian research council

Other known rebound effects and conflicting interests

- More asphalt (e.g. Kehä II)
 - Less congestion on the residential areas around (short-term impact)
 - More traffic overall (= attracts more car traffic) (long-term impact)
- Intelligent parking guidance in the cities
 - Less car traffic searching for a free parking lot (positive immediate impact)
 - More appealing to choose a private car to get to the city (negative long-term impact)
- Opening-up the bus lanes to eVehicles
 - More eVehicles → less emissions per car
 - Less cars on the "normal lanes" \rightarrow less emissions from each vehicle
 - More and more eVehicles → bus lanes get congested travel times per bus increases → less attractive to use public transit
- New shared modes
 - From which mode are people switching to these or are the trips generated totally new?
- Promotion of active modes
 - Mainly positive overall impacts on fluency, environment, health
 - Safety in numbers -effect

The Future

Mobility in large cities after COVID-19


Mayor Anne Hidalgo gives green light to £225m-scheme to transform French capital's most famous avenue

▲ An image from the architectural firm PCA-Stream showing the planned changes to the Champs-Élysées area. Photograph: PCA-Stream

https://www.theguardian.com/world/2021/jan/10/parisapproves-plan-to-turn-champs-elysees-intoextraordinary-garden-anne-hidalgo Comparing large global cities highlights significant differences in expected regional mode-share shifts through 2030.

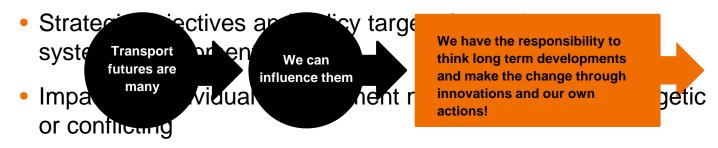
Passenger miles traveled, by city archetype,¹%

McKinsey & Company: Five COVID-19 aftershocks reshaping mobility's future <u>https://www.mckinsey.com/industries/automotive-and-assembly/our-</u> insights/five-covid-19-aftershocks-reshaping-mobilitys-future

SITRA: Lifestyles after lockdown

- The demand for solutions that help people to live a sustainable good life is there, but companies and institutions have been slow to lead
 - There is clear evidence that people are ready to move, but society, institutions and companies are lagging behind in finding the ways to respond to the new demands
- Companies and institutions developing solutions for a more sustainable lifestyle need to have a deep understanding of people's everyday life
 - This will require new capabilities, ecosystems and knowledge of how to best respond to and accelerate the existing demand

https://www.sitra.fi/en/publications/lifestylesafter-lockdown/


Future transport innovations?

The Doughnut of social and planetary boundaries (Kate Raworth 2017)

Transport system is a complex socio-technical entity

• There are numerous societal and technological trends and developments affecting and changing the way we travel

 Transition to smart sustainable transport system is a joint effort of multiple actors - collaborative learning and capacity building

Thank you!

anu.tuominen@vtt.fi

20/01/2021 VTT – beyond the obvious